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Introduction. It was in 1990 conversation with Aharonov (then visiting the
University of Bristol, from which he had, as a student of David Bohm, taken his
PhD in 1960) that Michael Berry first learned of the counterintuitive
phenomenon to which he gave the name “superoscillation.” To a conference
convened to celebrate Aharonov’s 60th birthday (University of South Carolina,
1992) Berry contributed a paper1 in which he described and undertook to
develop properties of a continuous generalization—actually, a class of
continuous generalizations—of what I call “Aharonov’s construction.”2

For days I have been struggling to understand Berry’s paper, particularly
as it relates to the consequences of band-limiting. Tired of wandering in circles,
of gaining occasional insights only to lose them again in the underbrush of many
Mathematica notebooks, my effort here will be to subject my present muddle
of understanding/confusion/ignorance to the discipline of the written page.

Aharonov’s construction. The “superoscillation phenomenon” discovered by
Yakir Aharonov is most easily exemplified by what I call “Aharonov’s function”

A(x, a, n) =
[
cos

(
x
n

)
+ ia sin

(
x
n

)]n (1)

which when subjected to the process n→∞ becomes“Aharonov’s construction.”
For large n we in leading order have

≈
[
1 + 1

n iax
]n −→ eiax

At a = 1 we have A(x, 1, n) = [exp
(
i x
n

)
]n = eix trivially, for all n; it is in the

cases a %= 1, and more specifically in the cases a > 1, that (1) acquires interest,
for by the binomial theorem (1) can be developed

A(x, a, n) =
n∑

p=0

A(p, a, n)eik(p,n)x (2)

A(p, a, n) = 1
2n

(n
p

)
(1 + a)n−p(1 − a)p

k(p, n) = 1 − 2p/n

1 “Faster than Fourier,” published in the proceedings of that conference,
Quantum Coherence and Reality: In Celebration of the 60th Birthday of Yakir
Aharonov (1994), available on the web.

2 Actually it was—if I read Berry correctly—in continuous language that
Aharonov sketched his discovery in that initial conversation with Berry.
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as a weighted sum of n + 1 complex exponentials (“Fourier terms”) with wave
numbers k(p, n) ∈ {1, 1 − 2

n , . . . ,−1 + 2
n ,−1} that equi-partition the interval

[−1, +1], meaning that all wavelengths λ(p, n) ! 2π. What makes A(x, p, n) so
remarkable is the fact that for any given a > 1 the construction

A(x, p, n → ∞) = eiax

has wavenumber larger—and wavelength shorter—than any of the Fourier terms
that appear on the right side of (2).

I have discussed properties of Aharonov’s function and provided graphic
illustration of the superoscillatory phenomenon in a pair of recent notes.3 Here
I mention only that the complex-valued function A(x, a, n) (i) is periodic

A(x, a, n) = A(x + 2πn, a, n)

(ii) assumes unit value at the origin A(0, a, n) = 1 and periodically thereafter;
(iii) approximates its asymptote eiax only in {a, n}-dependent neighborhoods
of those points, and (iv) that the situation is actually a bit more complicated
than those remarks suggest. For

F (x, a, n) ≡ |A(x, a, n)| =
[
cos2

(
x
n

)
+ a2 sin2

(
x
n

)]n/2

has half the period of A(x, a, n):

F (x, a, n) = F (x + πn, a, n)

We see that
Fmax = an

is achieved twice per A -period. We note that as n → ∞ the period 2πn increases
without bound, and so (assuming always that a > 1) does an.

The superoscillation phenomenon is exposed most vividly (as demonstrated
in a portfolio of figures3) when n is large but finite, when they appear in an
x-interval of characteristic width

√
n/a, centered on the troughs of the function

F (x, a, n).

Barry’s construction. The objective of Barry’s program can be symbolized

lim
n→∞

n∑

p=0

−→ lim
ν→∞

∫
dp

To that end, he writes

3 “When the whole vibrates faster than any of its parts: Computational
superoscillation theory,” (December, 2017); “A note concerning the length of
Aharonov’s superoscillatory interval,” (January, 2018).
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B(x, b, ν) =
∫ ∞

−∞
B(p, b, ν) eixk(p)dp (3)

where k(p) is a real-valued function of the real variable p and ranges on [−1, +1].
He requires moreover that it be a property of B(p, b, ν) that

lim
ν→∞

B(p, b, ν) = δ(p − ib) (4)

where ν is a continuous analog of the discrete parameter n. Then

lim
ν→∞

B(x, b, ν) = eixk(ib) = eiax with a = k(ib) (5)

He imposes upon k(p) additional requirements intended to ensure that a = k(ib)
is real and ! 1. Specifically, he requires that k(0) = 1, that k(p + iq) assumes
only real values on the imaginary axis (p = 0) in the complex p -plane (this
is ensured if k(p) is a function of p2), and that a = k(ib) ranges 1 → ∞ as b
ranges 0 → bmax. Barry lists several functions k(p) with the requisite properties,
among them

k1(p) = 1
1 + 1

2p2
: bmax =

√
2

k2(p) = sech p : bmax = π/2

k3(p) = exp
{
− 1

2p2
}

: bmax = ∞

To achieve (4) one looks to representations of the δ-function, of which the
literature supplies many; among those most commonly encountered are

D1(p − p0, ν) =
√
ν/π exp

{
−ν(p − p0)2

}

D2(p − p0, ν) = 1
2ν sech2{ν(p − p0)

}

both of which yield δ(p − p0) in the limit ν → ∞. It is the tractability of the
integral (3) that dictates the optimal selection. Barry elects to work with the
Gaussian representation D1(p − p0, ν), which brings (3) to the form

Bκ(x, b, ν) =
√
ν/π

∫ ∞

−∞
exp

{
−ν(p − ib)2 + ixkκ(p)

}
dp (6.1)

where

−ν(p − ib)2 + ixkκ(p) = ν
[
−

(
p2 − b2

)
+ i2

(
ξkκ(p) + bp

)]
(6.2)

with ξ = x/2ν and κ = 1, 2, 3. So far as I am aware, none of the integrals
(6.1) can be developed in analytic closed form (except—by design—in the limit
ν → ∞, where one has (5)). But if one introduces (6.2) into (6.1) one obtains
an integral of the form ∫ ∞

−∞
e νf(p ;b,ξ)dp

for which one can obtain asymptotic approximations by the method of steepest
descent. The effort then becomes one of discovering the locations (on the
complex p -plane) of the saddle points of the analytic function f(p; b, ξ). That
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is a problem which I have explored in a series of Mathematica notebooks, with
(remarkably complicated) results that I intend to summarize in a separate essay.
But my present interest lies elsewhere.

Barry’s model of band-limited superoscillation. Each of the functions kκ(p) can
be developed

kκ(p) = 1 − 1
2p2 + terms of higher even order

The function
k(p) = 1 − 1

2p2 (7)

is so simple that the integral (6.1)—now effectively Gaussian—can be evaluated
explicitly:

B(x, b, ν) =
√
ν/π

∫ ∞

−∞
exp

{
−ν(p − ib)2 + ixk(p)

}
dp

= 1√
1 + iξ

exp
[
ix

(
1 +

1
2b2

1 + iξ

)]

= 1√
1 + iξ

exp
[ b2xξ
2(1 + ξ2)

]
· exp

[
ix

(
1 +

1
2b2

(1 + ξ2)

)]
(8)

where the last step was accomplished by the command ComplexExpand and
where again ξ = x/2ν. Immediately,

lim
ν→∞

B(x, b, ν) = exp
[
ix

(
1 + 1

2b2
)]

= eixk(ib)

as was anticipated at (5).

We pause to look to the detailed implications of (8). The

oscillatory factor = eixK(b,ξ)

where

K(b, ξ) =
(
1 +

1
2b2

(1 + ξ2)

)
:






> 1 for all finite b, ξ
≈ k(ib) for ξ ≈ 0; i.e., for x ) ν
≈ 1 for ξ * 1; i.e., for x * ν
is superoscillatory for all b -values

The
prefactor = amplitude eiphase

where (use ComplexExpand[1/
√

1 + iξ])

amplitude = 1
(1 + ξ2) 1

4
exp

[ b2xξ
2(1 + ξ2)

]
:

{
≈ 1 for ξ ≈ 0; i.e., for x ) ν
≈ 0 for ξ * 1

phase = − 1
2Arg[1 + iξ]

= − 1
2arctan ξ :

{
≈ 0 for ξ ≈ 0
≈ − 1

4π for ξ * 1, after rapid descent
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These results are, however, subject to a fundamental criticism: they proceed
from an integral that describes a weighted superposition of eikx-terms with
wavenumbers k(p) that range from k(0) = 1 all the way down to k(±∞) = −∞.
Such terms possess all possible wavelengths, so have nothing to say about the
superoscillation phenomenon. The function k(p) falls, as required, within the
interval [−1, +1] only if −2 " p " +2, so if we are to achieve evidence of
“band-limited superoscillation” we must restrict the limits of integration. Berry
drew attention to the happy fact that the resulting integral, as a Gaussian
integral between finite limits, still admits of exact analytic evaluation;
Mathematica supplies a result that can after simplifications4 be written

Bband-limited(x, b, ν) =
√
ν/π

∫ 2

−2
exp

{
−ν(p − ib)2 + ixk(p)

}
dp (9.0)

= B(x, b, ν) × E(x, b, ν) (9.1)

with

E(x, b, ν) = 1
2erf

[
2
√
ν

1 + iξ + 1
2 ib

√
1 + iξ

]
+ 1

2erf
[
2
√
ν

1 + iξ − 1
2 ib

√
1 + iξ

]
(9.2)

For fixed x the parameter ξ = x/2ν → 0 asymptotically (i.e., as ν → ∞), and
at ξ = 0 we have

E(x, b, ν)
∣∣∣
ξ=0

= 1
2erf

[
2
√
ν (1 + 1

2 ib)
]
+ 1

2erf
[
2
√
ν (1 − 1

2 ib)
]

which by erf(z̄) = erf(z) is real, and by

lim
x→∞

erf(x + iy) = 1

assumes asymptotically the value 1. So asymptotically (9) gives back (8).

To describe the values assumed by Bband-limited(x, ν, b) when 0 < ν < ∞
one must look to properties of the analytic function erf(x+ iy), and it is in this
connection that the story becomes much more interesting. Figure 1 shows the
null curves of the real and imaginary parts of erf(x + iy). Figures 2 provide a
refined display of that same information, which Figures 3 display in 3D detail.
In the 1st, 4th, 5th and 8th octants the real part of erf(x+ iy) never deviates by
more than a few parts in a thousand from the value 1, while its imaginary part
remains similarly close to the value 0. In the other octants both parts foliate
and assume very large positive/negative values. The foliations interdigitate in
such a way as to produce a smooth absolute value (Figure 4); the rapidity of its
ascent in the 2nd, 3rd, 6th and 7th octants is demonstrated in Figure 5, where
10-fold increases in equally separated, indicating exponential growth.

4 Use ComplexExpand to obtain 1
2 ± i

2 =
√
±i/2.
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Looking now to how those properties of erf(x + iy) relate to properties of
the E(x, b, ν) of (9.2), whence via (9.1) to the Bband-limited(x, b, ν) of (9.0), we
write

2
√
ν

1 + iξ + 1
2 ib

√
1 + iξ

= X(x, ν, b) + iY (x, ν, b)

with

X(x, ν, b) = 2
√
ν

(1 + ξ2) 1
4

[(
ξ + 1

2b
)
sin

(
1
2arctan ξ

)
+ cos

(
1
2arctan ξ

)]

Y (x, ν, b) = 2
√
ν

(1 + ξ2) 1
4

[(
ξ + 1

2b
)
cos

(
1
2arctan ξ

)
− sin

(
1
2arctan ξ

)]

Z(x, ν, b) = X(x, ν, b) + iY (x, ν, b)

in which we have again employed the abbreviation ξ = x/2ν. In this detailed
notation (9.2) reads

E(x, ν, b) = 1
2erf

(
Z(x, ν, b)

)
+ 1

2erf
(
Z(x, ν,−b)

)

In Figures 6 the functions E(2, 50, b) and E(3, 50, b) are seen to maintain unit
value up to the near-neighborhood of b = 2, where they abruptly begin rapid
large-amplitude oscillation, as these results demonstrate numerically:

E(2, 50, 1.9) = 1.0000 − i 7.1789 × 10−11

E(3, 50, 1.9) = 1.0000 + i 6.2293 × 10−11

E(2, 50, 2.1) = +1.0484 × 107 + i 1.6892 × 107

E(3, 50, 2.1) = −1.7794 × 107 + i 7.9214 × 105

The complex coordinates of those points are

Z(2, 50, 1.9) = 14.2772 + i 13.5744
Z(2, 50, 2.1) = 14.2913 + i 14.9884

(10.1)

Z(3, 50, 1.9) = 14.3451 + i 13.6426
Z(3, 50, 2.1) = 14.3663 + i 15.0563

(10.2)

all of which fall within the square with vertices at 13(1+i) and 16(1+i). Figure 7
displays within that square the null curves of the real and imaginary parts of
the error function. Superimposed upon that display are red dots derived from
(10.1), blue dots derived fom (10.2). For given values of {x, ν} the function
Z(x, ν, b) inscribes b-parameterized straight lines on the complex plane; those
lines are shown in their respective colors.

The abrupt onset of extreme rapid oscillation displayed in Figure 6 is seen
thus to result when the increasing value of b has moved Z(x, ν, b) off the flat
unit plane into the region of tormented soaring mountains.
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At (9.0), p -values that fall outside the interval [−2, +2 ] are explicitly
excluded by the limits placed on the integral. The Gaussian simplicity of the
integrand permitted analytic evaluation of the truncated integral, producing
(9.1), where the factor E(x, b, ν)has been seen—by the mechanism just described
(Figure 7)—to impose (Figures 6) the condition 0 < b " 2, giving finally

Bband-limited(x, ν, b) = B(x, ν, b) : 0 < b " bmax = 2 (11)

where B(x, ν, b) can by manipulation of (8) be described

B(x, ν, b) = 1
(1 + ξ2) 1

4
exp

[ b2xξ
2(1 + ξ2)

]

× exp
[
ix

(
1 +

1
2b2

(1 + ξ2)

)
− i 1

2arctan ξ
]

: ξ = x/2ν

Figures 8 display superimposed graphs of cos
[
x

(
1+ 1

2b2
)]

and ,
[
B(x, ν, b)

]
for

assorted values of {ν, b}. The point is that, while the figures are qualitativly
similar, only those with b " 2 (meaning asymptotic wavenumber K " 3) can
be considered to comprise illustrations of superoscillation.

Remarks. The preceding discussion—particularly as it referred to properties of
the error function with complex argument—relied entirely/critically upon what
Mathematica has to say graphically about that subject. One would like to be
in position to develop all that material analytically, but so intricately complex
is the subject that that would appear to be a very heavy undertaking.

Berry has directed our attention to a tractable Gaussian model . One might
expect qualitatibly similar results to follow from equations like (9.0) when
one adopts different functions k(p), different representations of the complex
δ-function, places differently dictated limits on the integral. But one expects
such adjustments to lead beyond the bounds of analytic tractability, to require
profoundly novel modes of analysis.

Asymptotic approximation by the method of steepest descent. With the exact
analytic result (9) in hand there would appear to be no need to appeal to
approximation methods. But in the more general cases mentioned just above
such methods may provide the only available avenue. It is, therefore, of interest
to learn what they have to contribute in the present simple instance.

The integral (9.0) can be written

Bband-limited(x, b, ν) =
√
ν/π

∫ 2

−2
ef(p ;x,b,ν)dp

with

f(p ; x, b, ν) = −ν(p − ib)2 + ix(1 − 1
2p2) : abbreviated f(p) (12)
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where f(p) is analytic on the complex p -plane. Writing p + iq to denote points
on that plane, we have

f(p + iq) = u(p, q) + iv(p, q)

with
u(p, q) = pqx + b2ν − p2ν − 2bqν + q2ν

v(p, q) = x − 1
2p2x + 1

2q2x + 2bpν − 2pqν

which, as we verify, do satisfy the Cauchy-Riemann conditions:

up = vq and uq = −vp

To locate the saddlepoints (of which for given {x, b, ν} there is in the present
instance only one, denoted s) we solve up(p, q) = uq(p, q) = 0 (or equivalently
vp(p, q) = vq(p, q) = 0) for p and q and obtain

s ≡ ps + iqs = 2bxν
x2 + 4ν2

+ i 4bν2

x2 + 4ν2

= b
ξ − i

if one sets ν = x/2ξ
(13)

The resulting equations

ps(ξ) = b ξ
1 + ξ2

and qs(ξ) = b
1 + ξ2

(14.1)

trace a ξ-parameterized curve C on the complex p -plane. Eliminating ξ between
those equations, we obtain an implicit construction of C:

p2
s = qs(b − qs) equivalently p2

s + (qs − 1
2b)2 = ( 1

2b)2 (14.2)

Equations (14) provide alternative descriptions of a semi-circle (Figure 9), with
center at i1

2b and radius 1
2b.

Expanding f(p) about a saddlepoint s, we have5

f(p) = f(s) + f ′(s)(p − s) + 1
2f ′′(s)(p − s)2

with

f(s) = x2b2ν
x2 + 4ν2

+ ix
(
1 + 2b2ν2

x2 + 4ν2

)
(15.11)

= xb2ξ
2(1 + ξ2)

+ ix
(
1 + b2

2(1 + ξ2)

)
(15.12)

f ′(s) = 0 (15.2)
f ′′(s) = −2ν − ix

= −2ν(1 + iξ) (15.3)

5 Because f(p) is in the present instance quadratic the series promptly
terminates.
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where the manipulative details have been entrusted to Mathematica. Equation
(15.20) asserts simply that s is—by construction—a stationary point of the
function f(p + iq) = u(p, q) + iv(p, q). From the analyticity of f(p + iq) it
follows that u(p, q) and v(p, q) are harmonic, therefore that s marks the location
not of a local extremum but (by default) of a saddlepoint. The 2nd-derivative
properties of f(p + iq) at s, to which (15.3) allude, are exposed most clearly by
the Hessian

H(p + iq) =
(

upp(p, q) upq(p, q)
uqp(p, q) uqq(p, q)

)

which in the present instance reads

H(s) =
(
−2ν x
x 2ν

)

This is a traceless real symmetric matrix (from which follow a host of familiar
properties), with equal-and-opposite real eigenvalues

λ(s) = ±
√

x2 + 4ν2 = ±2ν
√

1 + ξ2 = ±|f ′′(s)|

We now have
√
ν/π

∫ 2

−2
ef(p)dp =

√
ν/π

∫ 2

−2
ef(s)+f ′(s)(p−s)+ 1

2 f ′′(s)(p−s)2dp

≈
√
ν/π

∮

C
e

1
2 f ′′(s)(p−s)2dp · ef(s)

where the deformed contour C passes through the saddlepoint in the direction
indicated by the eigenvector associated with the negative eigenvalue (so as to
achieve “steepest descent” as one moves away from the saddlepoint). From

√
ν/π

∫

C
e−

1
2 λ(s)(p−s)2dp =

√
ν/π

√
2π
λ(s)

=
√

2ν
2ν

√
1 + ξ2

= 1√
|1 + iξ|

we obtain finally—in steepest descent approximation (ξ ↓ 0)—

Bband-limited(x, b, ν) ≈ 1√
|1 + iξ|

ef(s)

= 1√
|1 + iξ|

exp
[ xb2ξ
2(1 + ξ2)

]
exp

[
ix

(
1 + b2

2(1 + ξ2)

)]
(16)

This asymptotically approximated
∫ +2
−2 integral differs from the exact

∫ +∞
−∞

integral (8) in only this respect:

1√
1 + iξ

= 1√
|1 + iξ|

e−i 1
2 arctanξ has been replaced by 1√

|1 + iξ|

It differs from the exact
∫ +2
−2 integral (9.1) in that respect and additionally in the

absence of the E(x, b, ν)-factor that served to impose upon b the superoscillation
restriction 1 < b < 2. REMARK: The E(x, b, ν)-factor entered into (9.1) as the
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price paid for truncation
∫ +∞
−∞ −→

∫ +2
−2 of a Gaussian integral. The formal

appeal to the method of steepest descent that led to (16) is susceptible to
the criticism that it failed to take that truncation into account. Berry has
addressed that problem,1 and has—by an “elementary argument” that I cannot
yet claim to understand—recovered (without appeal to subtle properties of
erf(complex argument)) the condition b " 2.

From (7) and (13); i.e. from k(p) = 1 − 1
2p2 and s = b/(ξ − i), we obtain

k(s) =
(
1 + 1

2b2 1 − ξ2

(1 + ξ2)2
)

︸ ︷︷ ︸
−ib2 ξ

(1 + ξ2)2

K(b, ξ)

where K(b, ξ) is what Berry calls the “local wavenumber.” Clearly

K(b, 0) = 1 + 1
2b2, which = 3 when b = bmax = 2

K(b, 1) = 1
K(b, ξ) < 1 : ξ > 1

lim
ξ→∞

K(b, ξ) = 1

—all of which is illustrated in Figure 10 (in which b has been assigned its
maximal value bmax = 2). Only for 0 < ξ < 1 (i.e., for ν > 1

2x) does the local
wavenumber K(b, ξ) assume a (red) superoscillatory value > 1. The condition
0 < ξ < 1 produces the red saddlepoints in Figure 9.

Concluding remarks. Generally, one expects results obtained by asymptotic
analysis (such, for example, as the A(x, p, n → ∞) = eiax of page 2) to be
valid only asymptotically. The results obtained by application of the method
of steepest descent to Berry’s model of band-limited superoscillation are in this
respect exceptional. The method does fail to capture the complexities latent in
the factor E(x, ν, b) that appears in equations (9.1) and (9.2), but the net effect
of those complexities (Figures 1–5) is to impose upon b the restriction b " 2,
and the method of steepest descent does capture all features of the exact theory
that conform to that restriction. This it manages to do because the model is in
all relevant respects so Gaussian—the feature to which it owes its exceptional
tractability.

Many of the functions that occur in the preceding text differ superficially
from those that occur in Berry’s paper for notational reasons6 and because I
have sometimes subjected the arguments of functions to manipulations intended
to clarify their essential structure.

Berry’s Figures 3 illustrate two characteristic features of his model. They
are reproduced here as Figures 11, which serve to demonstrate that—notational

6 The analog of Aharonov’s parameter a is by Berry denoted A and has here
been denoted b; my ξ = x/2ν is by Berry written ξ = xδ2.
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differences notwithstanding—he and I are saying the same thing. His A = 2
and δ = 0.2 have become my b = 2 and ν = 1/2δ2 = 12.5. Superimposed
upon a graph of cos 3x in Figure 11a are graphs of B(x, ν, b) and data points
derived from the exact function B(x, ν, b)E(x, ν, b), where the construction of
those functions is borrowed from Figures 8 & 6; x ranges from 0 to 6, and
it is evident (compare Figures 8) that superoscillation persists only to x ≈ 1.
In Figure 11aa the exact function is displayed as a dashed red curve. The
superposition is precise because for b " 2 the E-factor is unity. Figure 11b
differs from Figure 11a only in that x ranges now from 40 to 46; the agreement
is still precise (for the same reason as before) but the data points are now
of order 1016. Figure 11c displays the log10 of the absolute value of the real
part of B(x, ν, b). Beyond the small-x superoscillatory region the log10 grows
linearly to large values, indicating exponential growth of |,[B(x, ν, b)]|. There
are two spikes per period, and they become progressively more widely separated
because

local wavelength = 2π
local wavenumber

= 2π
[
1 + b2

2(1 + x2/4ν2)

]–1

= 2π(x2 + 4ν2)
x2 + 2(2 + b2)ν2

gives
lim
x→0

local wavelength = 4π
2 + b2

= 2π/3 at b = 2
lim

x→∞
local wavelength = 2π

Gridlines at 0.55 and 2.70 bound a wavelength λ = 2.15 = 1.032 × 2π/3, while
gridlines at 21.25 and 27.35 bound a wavelength λ = 6.10 = 0.971 × 2π; we
expect local wavelength to expand by a factor of 3, and find that on the short
compass of the figure it has expanded by a factor of 2.837.


